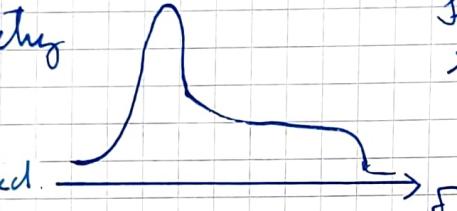
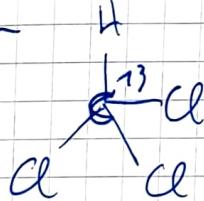


# Jigsaw 5A

1.)  $\delta_{\text{span}}(\delta_2): \Delta = \delta_{11} - \delta_{33} \geq 0$

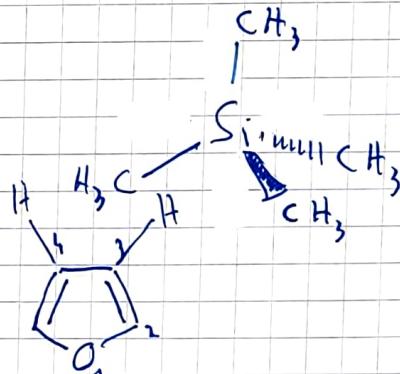

$\uparrow \quad \uparrow$   
2 of the chemical  
shift principal values

→ It's the anisotropy of the molecule. It's the max. width of the system.  $\hookrightarrow$  How diff. the shielding is in dif. directions


Skew ( $K$ ):  $K = 3(\delta_{22} - \delta_{\text{iso}})/\Delta$  where  $\delta_{\text{iso}} = \frac{\delta_{11} + \delta_{22} + \delta_{33}}{3}$   
 $\hookrightarrow$  How far from axial symmetry  
 $-1 < K < 1$

→  $\Delta$  is the asymmetry parameter, how symmetric the spectra are

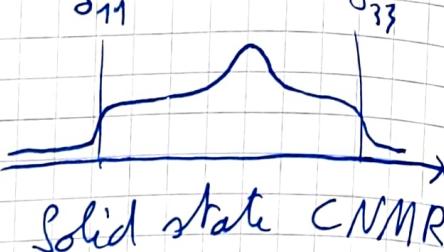
C.i High axial symmetry  
 Prolate



$\Delta$  is medium sized.   
 $K = \text{medium} \rightarrow \text{close to } \pm 1$

Sign depends on  
 the molecule




ii.  $\Delta$  is small

$$K = 0$$

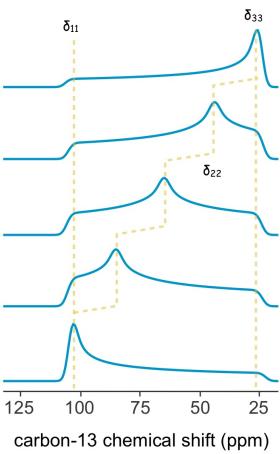


iii.  $\Delta$  is big

$$K = \text{small} \rightarrow \text{close to } 0$$



Good! 2/2


2.) The spray-dried tablets show a  $^1\text{H}\text{NMR}$  spectrum of an amorphous sample since the peaks are very broad and round. This is due to the many different magnitudes of interactions causing various different but similar chemical shifts. The tablet lactose is the one required for the experiment as its in crystalline form. This can be seen from the sharp and narrow peaks.

2/2

## Jigsaw 5A

1.75/2

1. [Week 4 Slides 38-41] Two useful parameters in static solid-state NMR are the span,  $\Omega$ , and skew,  $\kappa$ .



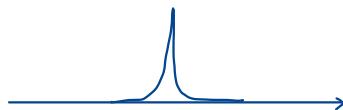
a. What do  $\Omega$  and  $\kappa$  represent? I.e., what information do they tell you about the molecule?  
 $\Omega$  represents the measurement of overall extent of anisotropy and  $\kappa$  is the measurement of the deviation from axial symmetry.

b. How can we determine  $\Omega$  and  $\kappa$  from a static spectrum?  
 By those formulas:  $\Omega = \delta_{11} \cdot \delta_{33}$   
 $\kappa = 3(\delta_{22} - \delta_{iso}) / \Omega$  with  $\delta_{iso} = \frac{\delta_{11} + \delta_{22} + \delta_{33}}{3}$

c. For the specified nucleus of each of the following molecules, predict the values of  $\Omega$  and  $\kappa$  and draw the expected powder pattern. For  $\Omega$ , you do not need to give a precise value, just a qualitative estimate (small, moderate, large). Assume the samples are all in a solid powder and measured in static conditions.

i. The  $^{13}\text{C}$  in chloroform

$\Omega$  = large


$\kappa$  = 1 because it's an oblate



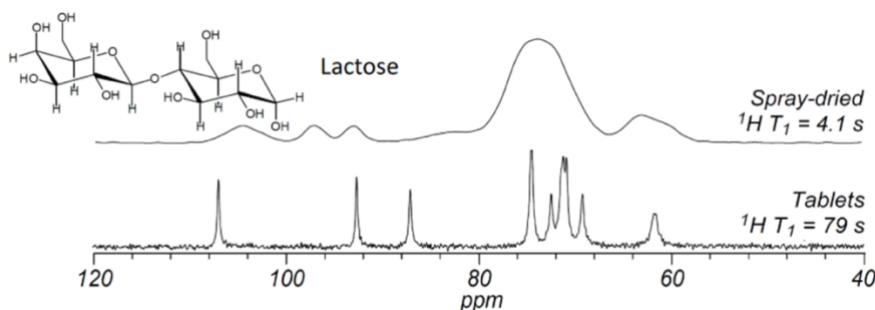
ii. The  $^{29}\text{Si}$  in tetramethylsilane

$\Omega \approx 0$

$\kappa \approx 0$



iii. The 3,4 protons in furan asymmetric environment


$\Omega$  = large

$\kappa \approx 10$  because it's a prolate



2/2

2. Solid-state NMR can be useful to determine if a sample is amorphous or crystalline. Imagine you need to buy lactose for your experiments, but you need it to be crystalline. A laboratory offers two types of lactose: spray-dried and in tablets, the spectra of which you can see below. Which of these two is appropriate for your experiments and why?



Amorphous state → badly resolved because the molecules are in random orientations.

Crystalline state → resolved because the number of orientations is limited, which implies a limited number of interactions with the magnetic field.

We actually have many orientations, and the sum of all orientations is observed leading to broadening due to CSA.

However, this broadening can be averaged by spinning the sample at MAS.

⇒ The tablets is appropriate because it is crystalline.